If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+60x+75=0
a = 10; b = 60; c = +75;
Δ = b2-4ac
Δ = 602-4·10·75
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-10\sqrt{6}}{2*10}=\frac{-60-10\sqrt{6}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+10\sqrt{6}}{2*10}=\frac{-60+10\sqrt{6}}{20} $
| f(3)=475(0.5)^3 | | 1/4+2x=7/8 | | 2.8=6t | | (x^2-6)/(4x+5)=0 | | |3b+9|-16=5 | | 25+.45x=40.25x | | X+0.06x=33920 | | 14x+17x-9+5=-3x+5-9 | | 11.2=(3x^2+18x+8)/5 | | 4s*13=51 | | 12/7.2=4/p | | -5.8-6x=3.2 | | (x+2)^2=-10 | | 4m-1=1 | | 4x+126=256 | | g(3)=240(0.75)^3 | | 7m-2=(4+m) | | -89=-4x-5(-5x-20) | | 6.4x+1.4(500000-x)=23500 | | -20=a/13 | | 5(1-2k)+8k=-3-k | | 0.25a=4 | | 4(3)+6(-2x+5)=6 | | -0.05x+32000=23500 | | -4-3a=2 | | 0.2c-3+1.1c=0.9 | | (12-2/2x)=8 | | -7/9(x-1/4=3/7 | | 7(X-7)+4x=-2X(x+2) | | 7(X-7)+4x=-2(x+2) | | 2v+5v-4v=6 | | -8-1/3n=-25 |